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Abstract

This study reports on a dynamic analysis of single and two-span continuous composite plate structures subjected to

multi-moving loads. Third order transverse shear deformation and rotary inertia in laminated composite plates under

the moving loads are studied. The 7-DOF finite element model of composite plate described in this paper may allow us

not only to determine the dynamic response under the moving loads but also to analyze the influences on dynamic

behavior of different plate theories, layup sequences, and boundaries. The numerical results demonstrate significant

effects of the ply angles on the dynamic behaviors of composite structures under the moving loads as well as the

criticality of the third order shear deformation theory (TSDT) from the standpoints of computational accuracy.

Furthermore, the results reported in this paper show the interactions between ply angels and moving velocities. Key

observation points are discussed and a brief design guideline is given.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Theoretical and experimental studies of the dynamic behavior of various civil structures such as bridges

and roads subject to moving vehicles have been conducted for more than one and half centuries. Theo-

retically, the problem of a moving load was first tackled for the case, in which the beam mass was con-
sidered small against the mass of a single, constant load. The original approximation solution was proposed

by Willis (1849) and Stokes (1849), one of the early experimenters in the field. In the twentieth century,

beam problems caused by the moving loads in idealized vibrations up on the railway bridges were studied

by Timoshenko (1922), Jeffcott (1929), Lowan (1935), and Looney (1958). Biggs (1959) conducted several

field investigations and theoretical studies related to the dynamic behaviors of bridges with idealized one
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Nomenclature

u1, u2, u3 x1, x2, x3-direction displacement in TSDT
�u1, �u2, �u3 x1, x2, x3-direction displacement in CLT
s time

Qx1 , Qx2 x1, x2-direction rotation in FSDT
j1, j2 parameters referred to as tracers

Nij normal and shear force resultants
�Mij moment resultants
�Qij transverse force resultants
F distributed load

m number of layers

qðkÞ mass density of the kth layer
t thickness of plates

Px1x1 , Px2x2 , Px1x2 third order axial force resultants
Rx1 , Rx2 third order transverse force resultants

�ð0Þ, �ð1Þ, �ð3Þ membrane strains, curvatures, and their high order strains
c0, c2 transverse shear strains and their third order terms
we
i , u

e
i Lagrange and Hermite interpolation functions

�De
i nodal values associated with �u3
Kab
ij , M

ab
ij stiffness and mass coefficients

D interval between n loads
v moving velocity

Sk, dsk time lag and moving distance for the kth moving load
�Nd
k location number of the element which the kth moving load passes through
Nd
x1
, Nd

x2
number of division elements in the transverse and longitudinal direction

cf ðxÞ initial coordinate of the moving load in the transverse direction

Lx1 , Lx2 length of a plate in both directions
RNk ðsÞ nodal loads using the Hermite interpolation functions

(nk; gk) natural coordinates of the element
H total magnitude of the external force

k0, k2, k3, k6, k7 integration constants in the Newmark integration method
�K triangularized effective stiffness matrix

p uniformly distributed step load
kds dynamic magnitude factor

wd, ws maximum dynamic and static displacements
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beam, considering the basic vibration mode and viscous damping. Veletsos and Huang (1970) analyzed a
three-span continuous bridge by using various parameters such as vehicle velocity, axis spacing, the weight

ratio between the vehicle and bridge, and dynamic characteristics of vehicles. Recently, various researches

are conducted on vehicle-induced vibrations of bridges (Chu et al., 1986; Hwang and Nowark, 1991;

Chatterjee et al., 1994; Yang and Yau, 1997). Gbandeyan and Oni (1995) analyzed a finite Rayleigh beam

and a non-Mindlin rectangular plate under an arbitrary number of concentrated moving masses. Lee et al.

(2002) analyzed the dynamic response of a prestressed concrete box girder bridge subjected to moving loads

using folded plate elements. However, all these works are limited, in that they analyzed only structures

idealized by a isotropic beam or plate member.
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Many finite element analyses of anisotropic plates using first and third order shear deformation theory

have been carried out but they are mostly applicable to structures under the impact or step loads (Krishna,

1977; Bhimaraddi and Stevens, 1984; Reddy and Phan, 1985; Murthy, 1981; Kant et al., 1990). In general, a

first order shear deformation theory (FSDT) can describe easily and accurately the kinematic behavior of a
composite plate (Reddy, 1997). However, it requires an estimation of shear correction factors; a value of

K ¼ 5=6 is normally used (Khdeir and Reddy, 1991). On the other hand, a third order plate theory (TSDT)
is free from such requirements and thus can yield more accurate results for both static and dynamic

conditions than those of the first order theories. This allows for convenient use of TSDT. Lee and Wooh (in

press) extended the theory to study free vibration of composite box beams using the FEM, in which they

demonstrated the criticality of the TSDT in analyzing folded composite plate structures. In this paper,

the existing TSDT are adopted to study dynamic responses of composite structures subjected to various

multi-moving loads, boundary conditions and layup sequences.
2. Theoretical formulation

2.1. Third order plate theory

The TSDT for analyzing laminated composite plates reviewed in this study is derived from the third-

order laminate formulation of Reddy (1997). The TSDT presented in this paper is based on the same
assumptions as those of the classical and first order plate theories, except that we no longer assume that the

straight lines normal to the middle surface remain straight after deformation but it is assumed that they can

be expressed in the form of a cubic equation. The displacement field (u1; u2; u3) in cartesian coordinates
(x1; x2; x3) at time s for the TSDT now can be expressed as
u1ðx1; x2; x3; sÞ ¼ �u1ðx1; x2; sÞ þ x3/x1ðx1; x2; sÞ � j1x33ð/x1 þ j0u3;x1Þ;
u2ðx1; x2; x3; sÞ ¼ �u2ðx1; x2; sÞ þ x3/x2ðx1; x2; sÞ � j1x33ð/x2 þ j0u3;x2Þ;
u3ðx1; x2; x3; sÞ ¼ �u3ðx1; x2; sÞ;

ð1Þ
where j0 and j1 are the parameters referred to as tracers. The condition j0 ¼ 1, /x1 ¼ �u3;x1 and
/x2 ¼ �u3;x2 in Eq. (1) yields the same displacement field as that of the classical lamination theory (CLT).
The displacement field becomes identical to that of FSDT for j1 ¼ 0. Note that j0 ¼ 1 for TSDT. In
addition, (�u1; �u2; �u3) and (/x1 ;/x2 ) have the same physical meaning as in the the FSDT and denote the

displacements and rotations of transverse normals on the plane x3 ¼ 0.

The equations of motion for the TSDT are derived using the principle of virtual displacements. The

following Euler–Lagrange equations can be obtained using the calculus of variations (Reddy, 1997):
Nx1x1;x1 þ Nx1x2;x2 ¼ f0€�u1 þ g1€/x1 � j1f3€�u3;x1 ;

Nx1x2;x1 þ Nx2x2;x2 ¼ f0€�u2 þ g1€/x2 � j1f3€u3;x2 ;
�Qx1;x1 þ �Qx2;x2 þ j1ðPx1x1;x1x1 þ 2Px1x2;x1x2 þ Px2x2;x2x2Þ þ F

¼ f0€�u3 � j21f6ð€�u3;x1x1 þ €u3;x2x2Þ þ j1½f3ð€�u1;x1 þ €�u2;x1Þ þ g4ð€/x1;x1 þ €/x2;x2Þ�;
�Mx1x1;x1 þ �Mx1x2;x2 � �Qx1 ¼ g1€�u1 þ C2€/x1 � j1g4€u3;x1 ;

�Mx1x2;x1 þ �Mx2x2;x2 � �Qx2 ¼ g1€�u2 þ C2€/x2 � j1g4€u3;x2 ;

ð2Þ
where Nij are the normal (i ¼ j) and shear (i 6¼ j) force resultants, �Mij are the moment resultants, �Qij are the
transverse force resultants, F is the distributed load, and



4460 S.-Y. Lee, S.-S. Yhim / International Journal of Solids and Structures 41 (2004) 4457–4472
�Mpq ¼ Mpq � j1Ppq; �Qp ¼ Qp � c2Rp; ð3Þ
fi ¼
Xm
k¼1

Z x3kþ1

x3k
qðkÞðx3Þi dx3 ði ¼ 0; 1; 2; . . . ; 6Þ; ð4Þ
gi ¼ fi � j1fi þ 2; C2 ¼ f2 � 2j1f4 þ j21f6; j1 ¼
4

3t2
; j2 ¼ 3j1; ð5Þ
where m is the number of layers, qðkÞ is the mass density of the kth layer, t is the wall thickness, and
(Px1x1 ; Px2x2 ; Px1x2 ) and (Rx1 ;Rx2 ) denote the higher-order resultants. The resultants are related to the strains
by the relationship:
fNg
fMg
fPg

8><
>:

9>=
>; ¼

½A� ½B� ½E�
½B� ½D� ½F �
½E� ½F � ½H �

0
B@

1
CA

f�ð0Þg
f�ð1Þg
f�ð3Þg

8><
>:

9>=
>;; ð6Þ
fQg
fRg

� �
¼ ½A� ½D�

½D� ½F �

� �
fcð0Þg
fcð2Þg

� �
; ð7Þ
where �ð0Þ are the membrane strains, �ð1Þ are the curvatures, �ð3Þ are the high order strains, and cð0Þ and cð2Þ

are the transverse shear strains and their high order terms, respectively. The stiffnesses in Eqs. (6) and (7)

are given in terms of the layer stiffnesses �QðkÞ
ij of the kth layer and the positions of the top and bottom faces

of the kth layer x3k þ 1 and x3k as
ðAij;Bij;Dij;Eij; Fij;HijÞ ¼
Xn
k¼1

Z x3kþ1

x3k

�QðkÞ
ij 1; x3; x23; x

3
3; x

4
3; x

6
3

� �
dx3; i; j ¼ 1; 2; 6; ð8Þ
ðAij;Dij; FijÞ ¼
Xn
k¼1

Z x3kþ1

x3k

�QðkÞ
ij 1; x23; x

6
3

� �
dx3; i; j ¼ 4; 5: ð9Þ
Note that the stiffnesses Eij, Fij and Hij consist of the terms whose orders are higher than cubic of the plate
thickness.
2.2. Displacement finite element method

2.2.1. Finite element model

The model described by Eq. (2) is named the displacement finite element method by Reddy and Phan

(1985), which requires the use of Lagrange interpolation of (�u1; �u2;/x1 ;/x2 ) and Hermite interpolation of �u3.
A nonconforming element for plates will thus have seven degrees of freedom per node, i.e., �u1, �u2, �u3, �u3;x1 ,
�u3;x2 , /x1 , and /x2 . The generalized displacements can be approximated over an element Xe by the expres-
sions
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�u1ðx1; x2; sÞ ¼
Xm
i¼1

�ue1iðsÞw
e
i ðx1; x2Þ;

�u2ðx1; x2; sÞ ¼
Xm
i¼1

�ue2iðsÞw
e
i ðx1; x2Þ;

�u3ðx1; x2; sÞ ¼
Xm
i¼1

�Dei ðsÞuei ðx1; x2Þ;

/x1ðx1; x2; sÞ ¼
Xm
i¼1
Xei ðsÞw

e
i ðx1; x2Þ;

/x2ðx1; x2; sÞ ¼
Xm
i¼1
Y ei ðsÞw

e
i ðx1; x2Þ;

ð10Þ
where we
i denote the Lagrange interpolation functions and uei are the Hermite interpolation functions. For

the nonconforming elements, the three nodal values associated with �u3 are written as �D1 ¼ �u3, �D2 ¼ �u3;x1 ,
�D3 ¼ �u3;x2 .
These equations can be rewritten in compact form as
X5
b¼1

Xnb
j¼1

Kab
ij Db

j þM
ab
ij
€Db
j

� �
� F a

i ¼ 0; i ¼ 1; 2; . . . ; na; ð11Þ
where a ¼ 1, 2, 3, 4, 5, n1 ¼ n2 ¼ n4 ¼ n5 ¼ 4, and n3 ¼ 12 for nonconforming elements, Db
j denote the

nodal values, Kab
ij are the stiffness coefficients, M

ab
ij are the mass coefficients, and F

a
i are the external forces,

respectively.

2.2.2. Multi-moving loads

Based on the assumption of small deformations, the dynamic response of a laminated composite plate

caused by a series of movings can be obtained as the superposition of the response induced by each of the
moving loads. In this study, Newmark’s explicit integration technique is adopted for the transient analysis

(Bathe, 1996).

Consider n loads of interval D at moving velocity v as shown in Fig. 1. The total traveling time (s) of the
loads can be obtained as
sd ðsÞ ¼ 3:6 Lx2 þ D1 þ D2 þ � � � þ Dn�1
v

� �
: ð12Þ
Fig. 1. Multi-moving loads at arbitrary Nkth plate element.
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Assuming that the first moving load enters the plate at s ¼ 0, the time lag (s) for the kth moving load is
sk ¼ 3:6ðk � 1ÞD=v. Thus, the moving distance (m) for kth moving load at time sþ Ds is dsk ¼ vsk. The
location number �Nd

k of the element which the kth moving load passes through at time sþ Ds can be
expressed as
sþDs �Nd
k ¼ IlðNd

x1
� 1Þ þ Is þ 1; ð13Þ
where
Il ¼ INT
sþDsdskNd

x2

Lx2

 !
and Is ¼ INT

cf ðxÞNd
x1

Lx1

� �
: ð14Þ
Here, Nd
x1
and Nd

x2
are the number of division elements in the transverse and longitudinal direction, cf ðxÞ is

the initial coordinate of the moving load in the transverse direction, Lx1 and Lx2 are the length of a plate in
both directions, respectively.

The moving load vectors fFkðsÞg at an arbitrary location on the Nd
k th element of the plate should be

inevitably distributed to the nodal loads fRNk ðsÞg using the Hermite interpolation function ½U�. The natural
coordinates (nk; gk) of the element for the k th moving load at time sþ Ds can be derived as
sþDsnk ¼ 2
cf ðx1ÞNd

x1

Lx1

�
� Is

�
� 1 and sþDsgk ¼ 2

ðcf ðx2Þ þsþDs dskÞNd
x2

Lx2

"
� Il

#
� 1: ð15Þ
In four-node element for seven degrees of freedom per a node, the distributed kth moving loads toward near
four nodes can be expressed as
sþDsRNk ¼
Sj
Sjþ1
Sjþ2

8<
:

9=
; ¼ ½Fk�½I �

Ujðnk; gkÞ
U0
jþ1ðnk; gkÞ

U00
jþ2ðnk; gkÞ

8><
>:

9>=
>;; ð16Þ
where j ¼ 7ði� 1Þ þ 2 for i ¼ 1; . . . ; 4.
The total magnitude H of the external force applied on the plate at sþ Ds can be obtained by summing

up the distributed N loads as given by

sþDsH ¼ sþDsHN1 þsþDs HN2 þ � � � þ sþDsHNn : ð17Þ
In Newmark integration scheme the effective loads at time sþ Ds can be calculated as
sþDs �H ¼ sþDsH þMðk0sUþ k2
s _Uþ k3

s €UÞ: ð18Þ

The dynamic displacements U, accelerometers €U, and velocities _U at time sþ Ds can be solved as
sþDsU ¼ ½�K�1�sþDs �H; ð19Þ

sþDs €U ¼ k0ðsþDsU� sUÞ � ks2 _U� k3 €U and sþDs _U ¼ s _U� k6
s €U� ksþDs

7
€U; ð20Þ
where the triangularized effective stiffness matrix is �K ¼ Kþ k0M, k0, k2, k3, k6, and k7 are integration
constants in the Newmark integration method, respectively.
3. Numerical results and discussion

The finite element formulation described in the earlier section was used to compare the present results

using TDST and FDST with the published result and also to generate numerical results to study the effects
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of various moving velocities, fiber angles, and boundary conditions on the dynamic behaviors of laminated

composite plates. In this study, two types of plates and stacking sequences are used. The composite plates

are simply supported single and two continuous spans such as slab bridges. The stacking sequences in this

study are classified into symmetric and antisymmetric angle plies. Based on TSDT, the classified parametric
cases are applied to analyze dynamic responses for single, three and five moving loads, respectively. The

computer program developed in this study is coded by using Fortran 95 (Lahey). It is composed of a static

analysis module, free vibration analysis module and dynamic analysis module for a moving load. It has the

advantage that the user can manage the in-output file without primary difficulty by using the Hoit method.

A flow chart of the computational procedure is shown in Fig. 2. Dimensions and boundary conditions of

a single or two-span composite plate are shown in Fig. 3. In the figure, note that u1 ¼ u2 ¼ u3 ¼ 0 (S.S.E.)
at a=2 for the two-span continuous plate.
3.1. Comparison of results obtained by FDST and TDST

To check the accuracy of the code developed and the difference of results between FDST and TDST, the

central deflection of a [0/90/0] composite plate (Model I) subjected to a uniformly distributed step load for
all clamped boundary condition has been obtained using this code. The material properties and input

parameters used in this study are listed in Table 1. In the case of FSDT, the results conform satisfactorily to

those of Kant et al. (1990) as shown in Fig. 4. On the other hand, the results analyzed by using TSDT are

different from those analyzed by using FDST. The discrepancies between the results analyzed by TSDT and

FSDT shown in Fig. 4 are caused by the effects of third order terms such as Eij, Fij, and Hij in TSDT.
Because of these terms, the deformation of a transverse normal according TDST is nonlinear. On the other

hand, in the case of FSDT, it normally uses assumed shear correction factors (generally 5/6) instead of the

third order terms. For these reasons, the difference can occur in the results between FSDT and TSDT in the
figure. As pointed out in Introduction, FSDT can describe easily and accurately the kinematic behaviors of

a composite plate. However, the dynamic responses of composite plates in different plate theories depend

on various material properties and geometries of plates, especially for the side-to-thickness ratio or

boundary conditions (Lee and Wooh, in press).
3.2. Single composite plate

Fig. 5 shows the dynamic displacements of symmetric cross-ply single composite plate (Model I) under

the single moving load with two different velocities and plate theories. In Fig. 5, we can observe noticeably

different results depending on fiber angles, moving velocities and plate theories. For two different plate

theories, the maximum difference of dynamic displacements between TSDT and FSDT is about 10% for the

fiber angle [45/)45/45/)45], which is relatively bigger than that of [0/90/90/0]. From Fig. 5, it can be also

observed that the 120 km/h moving velocities and [45/)45/)45/45] ply angle lamination produce the lowest
frequencies along longitudinal length of the plate. On the other hand, the dynamic displacement induced

for [45/)45/)45/45] ply angle is higher than that of [0/90/90/0]. Finally, Fig. 5 shows a comparative study of
results obtained applying TSDT and FDST for different moving velocities and ply angles. The figure also

reveals that there is perceptible difference in the results for different theories, and the third term of trans-

verse shear deformation may be employed for better computational accuracy.

Fig. 6 shows dynamic response of antisymmetric cross-ply composite single plates subjected to three

moving loads for different velocities (a), (b) and (c). As the moving velocity increases, the shape of the

dynamic displacements becomes smoother. This is predictable because it is expected that a faster moving
velocity would increase the moving distance per unit time. For the ply angle of [0/90/0/90], the induced



Fig. 2. A flow chart for determining static and dynamic responses of composite plate under the moving loads.

Fig. 3. Dimensions and boundary conditions of a laminated composite plate analyzed by the TSDT. S.S.E. and F.E. denote simply

supported and free edges, respectively.
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Table 1

Materials properties and input parameters used in this study

Model E1 E2 G12 G23 G13 m12 q a b t F Ds

I 52.50 E1=25 10.5 10.5 10.5 0.25 800 0.25 0.25 0.05 10.0 5.0

II 60.70 24.80 12.0 12.0 12.0 0.23 1300 10.0 0.5 5.0 1.0 5000.0

For material properties, the units of E1, E2, G12, G23, G13 are GPa and that of q is kg/m3, respectively. For input parameters, the units of
a, b, t are m, that of F is N/cm2 (Model I) or tonf (Model II), and that of Ds is l s, respectively. Note that a ¼ 20:0 for two-span
continuous plates of Model II.
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Fig. 4. Comparison of dynamic responses of a [0/90/0] composite plate (Model I) subjected to a uniformly distributed step load for all

clamped boundary condition. The displacement at the center of the plate is computed for every 5 ls.
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displacements are smaller than the others regardless of moving velocities, because it has the highest bending

stiffness in the longitudinal direction. For two-span continuous composite plates, the trends of the dis-

placement with different ply angles are similar to those of single plates as shown in Fig. 7. This observation

provides us with a clue that it would be better to use the [0/90/0/90] ply orientation for antisymmetric plies

in designing the structures subjected to moving loads such as composite bridge decks.

Dynamic analysis of single composite plates under five moving loads with symmetric cross-ply lami-
nation are performed to determine the dynamic magnitude factor (DMF, jds) as shown in Table 2 (Lee et al.,
2002). We can observe that the [0/90/90/0] laminate exhibits the lowest maximum displacements and DMF

regardless of moving velocities. In particular, it may be noticed that the maximum displacements of the [30/

)60/)60/30] laminate are approximately three times as much as those of the [90/0/0/90] laminate even for
the same material properties. On the other hand, in the case of antisymmetric layup sequences shown in

Table 3, the [0/90/0/90] laminate (¼ [90/0/0/90]) shows the lowest maximum displacements. The significant
difference in the results between symmetric and antisymmetric laminates depends on the magnitude of Bij
and Eij in Eq. (7). In the case of symmetric cross-ply laminates, the coupling stiffnesses Bij and Eij become
zero. On the other hand, it should be noted that they become nonzero for antisymmetric laminates. The

coupling nonzero terms caused by antisymmetric laminates can make deleterious contributions to the

overall dynamic behaviors of the plate. On the other hand, the DMF of [45/)45/45/)45] laminate is smaller
than that of [45/)45/)45/45] laminate. For other cases, the lowest magnitudes of the DMFs are different
with increasing moving velocities for the different layup sequences. Furthermore, we can observe that the

DMFs for most different ply angles are less than 1.2 regardless of moving velocities. This result may allow

us to consider that the plates made of composite materials have excellent dynamic resistance for most ply

angles. Among them, the usage of [90/0/0/90] laminate is recommended.
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3.3. Two-span continuous composite plate

Fig. 8 shows maximum dynamic displacements of two-span continuous composite plates subjected to

multi-moving loads for different velocities and symmetric layup sequences. It can be observed that the

maximum displacements of [90/0/0/90] laminate are noticeably smaller than others regardless of the moving

velocities. On the other hand, the DMFs for each laminate make little differences regardless of moving

velocities as shown in Fig. 9. Finally, Figs. 8 and 9 reveal that [90/0/0/90] laminate has superior stiffness for

moving loads, but the differences between [90/0/0/90] and others in the rigidity for the dynamic effects are

negligible. In the case of antisymmetric case, it can be observed from Fig. 10 that the maximum dis-

placements of [0/90/0/90] laminate are relatively smaller than others regardless of moving velocities.
However, it may be noted from Figs. 8 and 10 that they are larger than those of [90/0/0/90]. This is similar

to that of symmetric layup sequence shown in Tables 2 and 3. The DMFs (Fig. 11) for each laminate are

also similar to that shown in Fig. 9. As we mentioned earlier, the dynamic effects attributed to the zero

terms Bij and Eij of the [90/0/0/90] laminate have better influence on the dynamic behaviors. This obser-
vation provides us with a clue that it could be better to use [90/0/0/90] ply orientations in designing both

single and two-span continuous composite plates subjected to moving loads. However, we should recall that

dynamic effects by the coupling terms could be dependent on other factors such as the shape and material

properties of a plate.
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4. Summary and conclusion

An intuitive prediction of the dynamic behavior of composite structures subjected to multi-moving loads

is difficult because of their complexity due to the combined effect of anisotropy. In this study, the dynamic
characteristics are analyzed by considering various parameters. The advanced transient vibration analysis

based on the third order plate theory shows the significance of stacking sequences and moving velocities

of the load for composite plates with various boundary conditions.
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The parametric case studies revealed the importance of layup sequences for efficient and economic de-

sign. The following key observations were made in designing single and two-span continuous composite

structures under the moving loads.

1. The dynamic responses of composite plates analyzed by TSDT and FSDT were significantly different
from each other for different moving velocities and fiber orientations. It was especially true for



Table 2

Dynamic effects of composite plate (Model II) with single span for different velocities and symmetric layup sequences

Layup sequence Dynamic

effect

Moving velocity (km/h)

20 40 60 80 100 120 140

[0/90/90/0] wd 8.271 8.781 8.375 8.403 8.464 8.747 8.396

ws 8.206 8.206 8.206 8.206 8.206 8.206 8.206

jds 1.007 1.070 1.021 1.024 1.031 1.066 1.023

[30/)60/)60/30] wd 10.890 11.628 10.296 10.040 10.789 10.509 10.357

ws 10.125 10.125 10.125 10.125 10.125 10.125 10.125

jds 1.076 1.148 1.069 0.991 1.066 1.038 1.023

[45/)45/)45/45] wd 9.854 10.635 9.371 9.262 9.838 9.735 9.267

ws 8.207 8.207 8.207 8.207 8.207 8.207 8.207

jds 1.201 1.295 1.142 1.128 1.199 1.186 1.129

[90/0/0/90] wd 3.318 3.337 3.347 3.477 3.309 3.389 3.272

ws 3.312 3.312 3.312 3.312 3.312 3.312 3.312

jds 1.002 1.007 1.010 1.049 0.999 1.023 0.987

Table 3

Dynamic effects of composite plate (Model II) with single span for different velocities and antisymmetric layup sequences

Layup sequence Dynamic

effect

Moving velocity (km/h)

20 40 60 80 100 120 140

[0/90/0/90] wd 4.939 4.830 5.387 4.808 4.856 4.692 4.962

ws 4.731 4.731 4.731 4.731 4.731 4.731 4.731

jds 1.044 1.021 1.139 1.016 1.026 0.992 1.049

[30/)60/30/)60] wd 7.304 7.430 7.375 7.446 7.380 7.739 7.552

ws 7.260 7.260 7.260 7.260 7.260 7.260 7.260

jds 1.006 1.023 1.016 1.025 1.016 1.065 1.040

[45/)45/45/)45] wd 9.737 10.541 9.279 9.214 9.755 9.683 9.158

ws 9.213 9.213 9.213 9.213 9.213 9.213 9.213

jds 1.057 1.144 1.007 1.000 1.059 1.051 0.994

[75/)15/75/)75] wd 5.392 5.398 5.843 5.381 5.478 5.492 5.701

ws 5.365 5.365 5.365 5.365 5.365 5.365 5.365

jds 1.005 1.006 1.089 1.003 1.021 1.024 1.063
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[45/)45/45/)45]. In this case, the moving velocities made greater contributions to the dynamic responses
of composite plates for higher speed.

2. We found that the maximum displacement of [90/0/0/90] laminates are noticeably smaller than others

regardless of the moving velocities. On the other hand, the usage of [45/)45/)45/45] or [45/)45/45/
)45] ply angle should be avoided for almost any conditions because of its undesirable dynamic response.
For the single and two-span continuous plates, the trends of the displacement with different ply angles

are similar to each other.

3. On the other hand, differences in dynamic resistance (DMF) for different ply angles are negligible both in
single and two-span continuous plates. The DMFs are less than 1.2 for most ply angles and moving

velocities. This result reveals that the dynamic resistance for plates made of composite materials is excel-

lent and stable. In particular, the usage of [90/0/0/90] laminate is recommended.

4. Because of the effect of the coupling stiffnesses Bij and Eij, the maximum of symmetric laminates to dy-
namic loading is superior to that of the antisymmetric laminates. However, the DMF for antisymmetric
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Fig. 8. Maximum dynamic displacements of two-span continuous composite plates (Model II) subjected to multi-moving loads for

different velocities and symmetric layup sequences. The displacement at the center of the plate is computed for every 0.005 s.
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Fig. 9. Maximum magnitude factors of two-span continuous composite plates (Model II) subjected to multi-moving loads for different

velocities and symmetric layup sequences. The displacement at the center of the plate is computed for every 0.005 s.
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Fig. 10. Maximum dynamic displacements of two-span continuous composite plates (Model II) subjected to multi-moving loads for

different velocities and antisymmetric layup sequences. The displacement at the center of the plate is computed for every 0.005 s.
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layup sequences are similar to that of the symmetric cases both in single and two-span continuous cases.

In this case, Bij and Eij of antisymmetric laminates make positive contributions on the stable dynamic
resistance.

With the advancement of technology in fiber-reinforced composite materials, the applicability of com-

posites to bridge decks has been increased. The results of this study may serve as a benchmark for future

guidelines in designing composite structures subjected to various moving loads. But our parametric study is

only an example, and more studies should be carried out for individual design cases.
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